Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Wolfgang Imhof* and Daniel Berger

Institut für Anorganische und Analytische Chemie der Friedrich-Schiller-Universität Jena, August-Bebel-Straße 2, D-07743 Jena, Germany

Correspondence e-mail: cwi@rz.uni-jena.de

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.038$
$w R$ factor $=0.108$
Data-to-parameter ratio $=11.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Hexacarbonyl $\left[\mu_{2}-\eta^{3}-N\right.$-(3-thienylmethylidene)-4-(trimethylsilyl)aniline]diiron

The title compound, $\left[\mathrm{Fe}_{2}\left(\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NSSi}\right)(\mathrm{CO})_{6}\right]$, was produced by the reaction of N -(3-thienylmethylidene)-4-(trimethylsilyl)aniline and $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$ via a reaction sequence involving a $\mathrm{C}-\mathrm{H}$ activation step, followed by an intramolecular hydrogen transfer to the former imine C atom. The crystal structure analysis clearly proves that the reaction takes place regioselectively at the 2-position of the thiophene moiety. The structure of the title compound consists of an azaferracyclopentadiene ring to which another $\mathrm{Fe}(\mathrm{CO})_{3}$ moiety is apically coordinated. There are two independent molecules per asymmetric unit, which differ slightly in their bond lengths and angles.

Comment

The reaction of heterocyclic aromatic imines with $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$ yields dinuclear iron carbonyl complexes (Imhof, 1997, 1998; Tzeng et al., 2003). For analogous reactions with benzaldehyde derivatives, it has been shown that this reaction proceeds by strictly intramolecular $\mathrm{C}-\mathrm{H}$ activation in the ortho-position with respect to the exocyclic imine function. This is followed by a 1,3-hydrogen shift to the former imine C atom, thus producing a methylene group instead (Imhof et al., 1999).

The formation of such iron carbonyl complexes may be viewed as a model for $\mathrm{C}-\mathrm{C}$ bond-forming reactions catalyzed by ruthenium or rhodium compounds, in which a $\mathrm{C}-\mathrm{H}$ activation step initiates the catalytic cycle. These catalytic reactions have been shown to take place with the same regioselectivity as the $\mathrm{C}-\mathrm{H}$ activations induced stoichiometrically with $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$ (Murai et al., 1993, 1998; Pfeffer et al., 2002; Imhof \& Berger, 1999; Imhof \& Dönnecke, 2003). Heterocyclic imines with two H atoms in the ortho-position with respect to the imine substituent have very rarely been investigated with respect to the preferred regioselectivity of $\mathrm{C}-\mathrm{H}$ activation reactions, either stoichiometrically or cata-

Received 18 February 2004 Accepted 24 February 2004 Online 20 March 2004
lytically. Against this background, we present here the structure of the title compound, (4).

In the crystal structure of (4) there are two independent molecules (A involving atom Fe 1 and B involving atom Fe 3) in the asymmetric unit, which differ slightly in their bond lengths and angles. Selected geometric parameters are given in Table 1. The molecular structure of molecule A is shown in Fig. 1. It can clearly be seen that the $\mathrm{C}-\mathrm{H}$ activation reaction takes place regioselectively at the 2-position of the thiophene system (C4). The structure consists of an azaferracyclopentadiene ring ($\mathrm{C} 3 / \mathrm{C} 4 / \mathrm{C} 5 / \mathrm{N} 1 / \mathrm{Fe} 2$) to which another $\mathrm{Fe}(\mathrm{CO})_{3}$ moiety is apically coordinated.

The $\mathrm{Fe}-\mathrm{C}$ bond lengths of the thiophene double bond, $\mathrm{C} 3=\mathrm{C} 4$ to atom Fe 1 (molecule A) and $\mathrm{C} 23=\mathrm{C} 24$ to atom Fe 3 (molecule B), are not identical. The bond directed towards the C atom where $\mathrm{C}-\mathrm{H}$ activation occurred (C 4 and C 24 , respectively) is significantly shorter. The differences between these two $\mathrm{Fe}-\mathrm{C}$ bonds are 0.153 and $0.117 \AA$ in molecules A and B, respectively. The other bond lengths and angles are as expected, as can be seen in Table 1.

The aromatic substituent at the N atom shows a nearly perpendicular arrangement with respect to the plane of the azaferracyclopentadiene system [102.1 (2) ${ }^{\circ}$ in molecule A and 105.7 (2) ${ }^{\circ}$ in molecule B].

The crystal packing of (4) is shown in Fig. 2. The shortest intermolecular distances represent quite weak hydrogen bonds between the O atoms of the CO ligands and the H atoms of the SiMe_{3} substituents; details are given in Table 2.

Experimental

4-Trimethylsilylaniline, (2), was prepared by a procedure published previously by Felix et al. (1979). The reaction of (2) (2.2 g) with thiophene-3-carbaldehyde (1.5 g) and distillation of the oily brown crude product yielded the corresponding imine, (3), in 75% yield $(2.6 \mathrm{~g})$, as a pale-yellow liquid, which crystallized upon standing at room temperature (m.p. 325 K ; b.p. 388 K at 5×10^{-5} Torr; 1 Torr $=$ 133.322 Pa). Imine (3) (520 mg) was stirred together with $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$ (730 mg) in n-heptane (50 ml) at 323 K for 2 h . The solution turned red as the ligand and $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$ dissolved. After evaporation of all volatile material, the crude product was chromatographed on silica gel. Use of light petroleum as the eluent yielded (4) as a red solution ($450 \mathrm{mg}, 42 \%$). Crystals of (4) were obtained at 253 K from a concentrated solution in light petroleum (b.p. 313-333 K).

Crystal data

$\left[\mathrm{Fe}_{2}\left(\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NSSi}\right)(\mathrm{CO})_{6}\right]$
$M_{r}=539.20$
Monoclinic, $P 2_{1} / c$
$a=25.4591(11) \AA$
$b=14.1058(7) \AA$
$c=13.2386(6) \AA$
$\beta=99.223(3)^{\circ}$
$V=4692.8(4) \AA^{3}$
$Z=8$
Data collection
Nonius KappaCCD area-detector
\quad diffractometer
ω scans
6680 measured reflections
6680 independent reflections
$\left[\mathrm{Fe}_{2}\left(\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NSSi}\right)(\mathrm{CO})_{6}\right]$
Monoclinic, $P 2_{1} / c$
$a=25.4591$ (11) \AA
$b=14.1058$ (7) \AA
$c=13.2386$ (6) A
$V=4692.8(4) \AA^{\circ}$
$Z=8$

Data collection

Nonius KappaCCD area-detector
ω scans
6680 measured reflections
6680 independent reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0453 P)^{2}\right. \\
& +0.7589 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.006 \\
& \Delta \rho_{\max }=0.29 \mathrm{e}_{\AA^{-3}}^{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.28 \text { e } \AA^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0046 \text { (4) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

Fe1-N1	1.968 (3)	Fe3-N2	1.987 (3)
$\mathrm{Fe} 1-\mathrm{C} 4$	2.169 (3)	Fe3-C24	2.154 (3)
Fe1-C3	2.322 (4)	Fe3-C23	2.271 (4)
$\mathrm{Fe} 1-\mathrm{Fe} 2$	2.4538 (7)	Fe3-Fe4	2.4570 (7)
$\mathrm{Fe} 2-\mathrm{C} 4$	1.939 (4)	Fe4-C24	1.938 (4)
Fe2-N1	1.991 (3)	Fe4-N2	2.008 (3)
S1-C1	1.717 (5)	S2-C21	1.715 (4)
S1-C4	1.743 (3)	S2-C24	1.756 (3)
C1-C2	1.348 (6)	C21-C22	1.345 (5)
C2-C3	1.429 (5)	C22-C23	1.430 (5)
C3-C4	1.412 (5)	C23-C24	1.406 (5)
C3-C5	1.497 (5)	C23-C25	1.498 (4)
C5-N1	1.486 (4)	C25-N2	1.495 (4)
N1-C6	1.447 (4)	N2-C26	1.446 (4)
N1-Fe1-C4	73.16 (12)	N2-Fe3-C24	73.42 (12)
$\mathrm{N} 1-\mathrm{Fe} 1-\mathrm{C} 3$	64.07 (12)	N2-Fe3-C23	64.82 (11)
$\mathrm{C} 4-\mathrm{Fe} 1-\mathrm{C} 3$	36.45 (13)	$\mathrm{C} 24-\mathrm{Fe} 3-\mathrm{C} 23$	36.92 (13)
$\mathrm{N} 1-\mathrm{Fe} 1-\mathrm{Fe} 2$	52.11 (8)	$\mathrm{C} 23-\mathrm{Fe} 3-\mathrm{Fe} 4$	74.51 (9)
$\mathrm{C} 4-\mathrm{Fe} 1-\mathrm{Fe} 2$	49.11 (9)	C24-Fe4-N2	77.85 (13)
$\mathrm{C} 3-\mathrm{Fe} 1-\mathrm{Fe} 2$	73.64 (9)	$\mathrm{C} 24-\mathrm{Fe} 4-\mathrm{Fe} 3$	57.25 (10)
$\mathrm{C} 4-\mathrm{Fe} 2-\mathrm{N} 1$	77.90 (13)	N2-Fe4-Fe3	51.68 (8)
$\mathrm{C} 4-\mathrm{Fe} 2-\mathrm{Fe} 1$	57.76 (10)	C24-Fe4-C23	25.88 (12)
$\mathrm{N} 1-\mathrm{Fe} 2-\mathrm{Fe} 1$	51.28 (8)	C21-S2-C24	92.49 (18)
C1-S1-C4	92.5 (2)	C22-C21-S2	113.4 (3)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1$	113.5 (3)	$\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 23$	111.6 (4)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	111.4 (4)	C24-C23-C22	114.4 (3)
C4-C3-C2	114.2 (3)	C24-C23-C25	113.6 (3)
C4-C3-C5	113.6 (3)	C22-C23-C25	129.6 (3)
C2-C3-C5	130.2 (4)	$\mathrm{C} 24-\mathrm{C} 23-\mathrm{Fe} 3$	67.0 (2)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{Fe} 1$	65.9 (2)	C23-C24-S2	108.0 (3)
C3-C4-S1	108.4 (3)	$\mathrm{C} 23-\mathrm{C} 24-\mathrm{Fe} 4$	117.1 (3)
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{Fe} 2$	116.6 (3)	S2-C24-Fe4	134.6 (2)
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{Fe} 1$	77.7 (2)	$\mathrm{C} 23-\mathrm{C} 24-\mathrm{Fe} 3$	76.1 (2)
$\mathrm{Fe} 2-\mathrm{C} 4-\mathrm{Fe} 1$	73.13 (12)	Fe4-C24-Fe3	73.59 (12)
N1-C5-C3	100.6 (3)	N2-C25-C23	100.1 (3)
C6-N1-C5	110.5 (3)	C26-N2-C25	112.6 (2)
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{Fe} 2$	122.9 (2)	C26-N2-Fe4	120.6 (2)
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{Fe} 2$	112.9 (2)	$\mathrm{C} 25-\mathrm{N} 2-\mathrm{Fe} 4$	112.5 (2)
$\mathrm{Fe} 1-\mathrm{N} 1-\mathrm{Fe} 2$	76.61 (10)	Fe3-N2-Fe4	75.90 (9)

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 12-\mathrm{H} 12 A \cdots \mathrm{O}^{\mathrm{i}}$	0.96	2.80	$3.668(5)$	151
${\mathrm{C} 33-\mathrm{H} 33 B \cdots \mathrm{O}^{\mathrm{ii}}}_{\mathrm{C} 33-\mathrm{H} 33 A \cdots \mathrm{O} 7^{\mathrm{iii}}}$	0.96	2.78	$3.376(6)$	121
$\mathrm{C} 25-\mathrm{H} 25 B \cdots \mathrm{O} 9^{\mathrm{iv}}$	0.97	2.74	$3.567(6)$	145
$\mathrm{C} 34-\mathrm{H} 34 C \cdots \mathrm{O} 11^{\mathrm{v}}$	0.96	2.77	$3.458(5)$	129
Symmetry codes: (i) $1-x, y-\frac{1}{2}, \frac{1}{2}-z ;$ (ii) $x,-\frac{1}{2}-y, z-\frac{1}{2} ;$ (iii) $-x, y-\frac{1}{2},-\frac{1}{2}-z ;$ (iv)				
$x, \frac{1}{2}-y, z-\frac{1}{2} ;\left(\right.$ v) $x,-\frac{1}{2}-y, \frac{1}{2}+z$.				

Figure 1

The molecular structure of one independent molecule of (4), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

All H atoms were constrained in idealized positions during the refinement, with the methyl groups being allowed to rotate around their $\mathrm{C}-\mathrm{C}$ bond and with $U_{\text {iso }}(\mathrm{H})$ values fixed at $0.08 \AA^{2}$.

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski \& Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: $X P$ (Siemens, 1990); software used to prepare material for publication: SHELXL97.

References

Felix, G., Dunogues, J. \& Calas, R. (1979). Angew. Chem. 91, 439-442; Angew. Chem. Int. Ed. Engl. 18, 402-405
Imhof, W. (1997). J. Organomet. Chem. 541, 109-116.

Figure 2
A packing diagram of (4).

Imhof, W. (1998). Inorg. Chim. Acta, 282, 111-118.
Imhof, W. \& Berger, D. (1999). J. Chem. Soc. Chem. Commun. p. 1457.
Imhof, W. \& Dönnecke, D. (2003). Tetrahedron 56, 8499-8507.
Imhof, W., Göbel, A., Ohlmann, D., Flemming, J. \& Fritzsche, H. (1999). J. Organomet. Chem. 584, 33-43.
Murai, S., Kakiuchi, F., Sekine, S., Tanaka, Y., Kamatani, A., Sonoda, M. \& Chatani, N. (1993). Nature (London), 366, 529-531.
Murai, S., Sato, T., Kakiuchi, F. \& Chatani, N. (1998). Chem. Lett. pp. 893-894.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Pfeffer, M., Ritleng, V. \& Sirlin, C. (2002). Chem. Rev. 102, 1731-1770.
Sheldrick, G. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1990). XP. Version 4.2. Siemens Analytical X-ray Instruments Inc., Karlsruhe, Germany.
Tzeng, Y.-F., Wu, C.-Y., Hwang, W.-S. \& Hung, C.-H. (2003). J. Organomet. Chem. 687, 16-26.

